Leetcode(146) LRU Cache

Description

Design and implement a data structure for Least Recently Used (LRU) cache. It should support the following operations: get and put.

get(key) - Get the value (will always be positive) of the key if the key exists in the cache, otherwise return -1.
put(key, value) - Set or insert the value if the key is not already present. When the cache reached its capacity, it should invalidate the least recently used item before inserting a new item.

The cache is initialized with a positive capacity.

Follow up:
Could you do both operations in O(1) time complexity?

Example:

1
2
3
4
5
6
7
8
9
10
11
LRUCache cache = new LRUCache( 2 /* capacity */ );

cache.put(1, 1);
cache.put(2, 2);
cache.get(1); // returns 1
cache.put(3, 3); // evicts key 2
cache.get(2); // returns -1 (not found)
cache.put(4, 4); // evicts key 1
cache.get(1); // returns -1 (not found)
cache.get(3); // returns 3
cache.get(4); // returns 4

解法

用一个哈希表和一个双向链表实现,注意删除节点,移动节点时头尾节点的处理,同时如果put一个已有的key对,则更新并置于队尾即可。写的真心心累…

具体代码如下:

1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
class LRUCache {

class Node {
int val;
int key;
Node next;
Node pre;

Node(int key, int val) {
this.val = val;
this.key = key;
}
}

Node head = null;
Node tail = null;
int capacity;
HashMap<Integer, Node> valMap;

public LRUCache(int capacity) {
this.capacity = capacity;
this.valMap = new HashMap<>();
}

public int get(int key) {
if (this.valMap.containsKey(key)) {
Node result = this.valMap.get(key);
Node pre = result.pre;
Node next = result.next;
if (head == result && tail == result) {
return result.val;
}
if (head == result) {
head = next;
tail.next = result;
result.pre = tail;
result.next = null;
tail = result;
return result.val;
} else if (tail == result) {
return result.val;
} else {
pre.next = next;
next.pre = pre;
tail.next = result;
result.pre = tail;
result.next = null;
tail = result;
return result.val;
}
}
return -1;
}

public void put(int key, int value) {
if (valMap.containsKey(key)) {
this.get(key);
tail.val = value;
return;
}
Node node = new Node(key, value);
if (this.valMap.size() < this.capacity) {
if (head == null) {
head = node;
head.pre = null;
head.next = null;
tail = node;
} else {
tail.next = node;
node.pre = tail;
node.next = null;
tail = node;
}
} else {
valMap.remove(head.key);
if (head == tail) {
head = tail = node;
this.valMap.put(key, node);
return;
}
head = head.next;
head.pre = null;
tail.next = node;
node.pre = this.tail;
node.next = null;
tail = node;

}
this.valMap.put(key, node);
}

}

/**
* Your LRUCache object will be instantiated and called as such:
* LRUCache obj = new LRUCache(capacity);
* int param_1 = obj.get(key);
* obj.put(key,value);
*/